SARS-COV-2 Spike RBD PaB
To Order Contact us: stephen@expresspharmapulse.com
SARS-CoV-2 Spike S1 RBD Protein, Human Fc-Fusion, Avi-Tag |
|||
E80025 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 RBD Protein, Avi-His-tag |
|||
E80024-2 | EpiGentek | 1 ml | EUR 4995.1 |
SARS-CoV-2 Spike S1 RBD Protein, Mouse Fc-fusion |
|||
E80026-2 | EpiGentek | 50 ul | EUR 823.9 |
SARS-CoV-2 Spike S1 RBD (V367F) Protein, Avi-His-tag |
|||
E80023-2 | EpiGentek | 1 ml | EUR 3934.7 |
Recombinant SARS-CoV-2 Spike Glycoprotein(S) (D614G), Partial |
|||
E80028 | EpiGentek |
|
|
SARS-CoV-2 (COVID-19) Spike RBD Antibody |
|||
9087-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody |
|||
9087-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 Spike S1 RBD Protein, Human Fc-Fusion, Avi-Tag |
|||
E80025-2 | EpiGentek | 1 ml | EUR 3934.7 |
SARS-CoV-2 Spike RBD protein antibody pair 1 |
|||
CSB-EAP33245 | Cusabio | 1 pair | EUR 900 |
Description: This is a set of capture antibody and HRP-conjugated antbody for quantitative detection of SARS-CoV-2 Spike RBD protein for through solid phase sandwich ELISA. |
SARS-CoV-2 (COVID-19) Spike RBD Antibody (biotin) |
|||
9087-biotin-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody (biotin) |
|||
9087-biotin-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike-RBD Recombinant Protein |
|||
10-008 | ProSci | 0.1 mg | EUR 714.3 |
Description: SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) also known as 2019-nCoV (2019 Novel Coronavirus) is a virus that causes illnesses ranging from the common cold to severe diseases. SARS CoV-2 spike protein is composed of S1 domain and S2 domain. S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on the target cells. SARS-CoV-2 spike protein (RBD) has the potential value for the diagnosis of the virus. |
SARS-CoV-2 (COVID-19) Spike-RBD Recombinant Protein |
|||
10-015 | ProSci | 0.1 mg | EUR 714.3 |
Description: SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) also known as 2019-nCoV (2019 Novel Coronavirus) is a virus that causes illnesses ranging from the common cold to severe diseases. SARS CoV-2 spike protein is composed of S1 domain and S2 domain. S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on the target cells. SARS-CoV-2 spike protein (RBD) has the potential value for the diagnosis of the virus. |
SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
|||
10-100 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
|||
10-117 | ProSci | 0.1 mg | EUR 752.1 |
Description: SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
|||
10-204 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
|||
10-206 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
|||
10-303 | ProSci | 0.1 mg | EUR 632.4 |
Description: SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein |
SARS-CoV-2 Spike S1 (16-685) Protein, Avi-His-tag |
|||
E80021 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 (13-665) Protein, Fc Fusion, Avi-tag |
|||
E80020 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 (16-685) Protein, Fc Fusion, Avi-tag |
|||
E80022 | EpiGentek |
|
|
SARS-CoV-2 (COVID-19) Spike RBD domain Recombinant Protein |
|||
20-232 | ProSci | 0.1 mg | EUR 726.9 |
Description: SARS-CoV-2 (COVID-19) Spike RBD domain Recombinant Protein |
SARS-CoV-2 (COVID-19) Biotinylated Spike RBD Recombinant Protein |
|||
10-205 | ProSci | 0.1 mg | EUR 752.1 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike RBD + SD1 Recombinant Protein |
|||
10-304 | ProSci | 0.1 mg | EUR 632.4 |
Description: SARS-CoV-2 (COVID-19) Spike RBD + SD1 Recombinant Protein |
Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant |
|||
P1530-10 | Biovision | 10 µg | EUR 187.2 |
Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant |
|||
P1530-50 | Biovision | 50 µg | EUR 709.2 |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B5] |
|||
SD9431-002mg | ProSci | 0.02 mg | EUR 253.22 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B5] |
|||
SD9431-01mg | ProSci | 0.1 mg | EUR 723.62 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B7] |
|||
SD9433-002mg | ProSci | 0.02 mg | EUR 253.22 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B7] |
|||
SD9433-01mg | ProSci | 0.1 mg | EUR 723.62 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P8-F9] |
|||
SD9503-002mg | ProSci | 0.02 mg | EUR 253.22 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P8-F9] |
|||
SD9503-01mg | ProSci | 0.1 mg | EUR 723.62 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P7-G12] |
|||
SD9505-002mg | ProSci | 0.02 mg | EUR 253.22 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P7-G12] |
|||
SD9505-01mg | ProSci | 0.1 mg | EUR 723.62 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 Spike S1 RBD Protein, Avi-His-tag |
|||
E80024-1 | EpiGentek | 100 ul | EUR 635.8 |
SARS-CoV-2 Spike S1 RBD Protein, Mouse Fc-fusion |
|||
E80026-1 | EpiGentek | 20 ul | EUR 588.5 |
Recombinant SARS-CoV-2 Spike RBD Protein with His-Tag |
|||
E80000-1 | EpiGentek | 100 ul | EUR 518.1 |
Recombinant SARS-CoV-2 Spike RBD Protein with mFc Tag |
|||
E80011-1 | EpiGentek | 100 ul | EUR 588.5 |
Recombinant SARS-CoV-2 Spike RBD Protein with His-Tag |
|||
E80015-1 | EpiGentek | 100 ul | EUR 695.2 |
SARS-CoV-2 Spike Peptide |
|||
9083P | ProSci | 0.05 mg | EUR 235.5 |
Description: (NT) SARS-CoV-2 Spike peptide |
SARS-CoV-2 Spike Peptide |
|||
9087P | ProSci | 0.05 mg | EUR 235.5 |
Description: (CT) SARS-CoV-2 Spike RBD peptide |
SARS-CoV-2 Spike Peptide |
|||
9091P | ProSci | 0.05 mg | EUR 235.5 |
Description: (IN) SARS-CoV-2 Spike peptide |
SARS-CoV-2 Spike Peptide |
|||
9095P | ProSci | 0.05 mg | EUR 235.5 |
Description: (IN) SARS-CoV-2 Spike peptide |
Recombinant SARS-CoV-2 Spike Glycoprotein(S) (D614G), Partial |
|||
E80028-2 | EpiGentek | 100 ul | EUR 860.2 |
SARS-CoV Spike Antibody |
|||
3219-002mg | ProSci | 0.02 mg | EUR 206.18 |
Description: SARS-CoV Spike Antibody: A novel coronavirus has been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3219-01mg | ProSci | 0.1 mg | EUR 523.7 |
Description: SARS-CoV Spike Antibody: A novel coronavirus has been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3221-002mg | ProSci | 0.02 mg | EUR 206.18 |
Description: SARS-CoV Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3221-01mg | ProSci | 0.1 mg | EUR 523.7 |
Description: SARS-CoV Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3223-002mg | ProSci | 0.02 mg | EUR 206.18 |
Description: SARS Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3223-01mg | ProSci | 0.1 mg | EUR 523.7 |
Description: SARS Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3225-002mg | ProSci | 0.02 mg | EUR 206.18 |
Description: SARS-CoV Spike antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Antibody |
|||
3225-01mg | ProSci | 0.1 mg | EUR 523.7 |
Description: SARS-CoV Spike antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2. |
SARS-CoV Spike Protein |
|||
abx060655-1mg | Abbexa | 1 mg | EUR 2030.4 |
SARS-CoV-2 (COVID-19) Spike RBD + SD1 +SD2 Recombinant Protein |
|||
10-305 | ProSci | 0.1 mg | EUR 632.4 |
Description: SARS-CoV-2 (COVID-19) Spike RBD + SD1 +SD2 Recombinant Protein |
Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2; RBD), Recombinant |
|||
P1529-10 | Biovision | 10 µg | EUR 235.2 |
Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2; RBD), Recombinant |
|||
P1529-50 | Biovision | 50 µg | EUR 709.2 |
SARS-CoV-2 Spike S1 RBD (V367F) Protein, Avi-His-tag |
|||
E80023-1 | EpiGentek | 100 ul | EUR 635.8 |
SARS Spike RBD Recombinant Protein |
|||
10-211 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 Spike S2 Peptide |
|||
9119P | ProSci | 0.05 mg | EUR 235.5 |
Description: (IN) SARS-CoV-2 Spike peptide |
SARS-CoV-2 Spike S2 Peptide |
|||
9123P | ProSci | 0.05 mg | EUR 235.5 |
Description: (CT) SARS-CoV-2 Spike peptide |
SARS-CoV-2 Spike Monoclonal Antibody |
|||
A73664-050 | EpiGentek | 50 ul | EUR 341 |
SARS-CoV-2 Spike Monoclonal Antibody |
|||
A73664-100 | EpiGentek | 100 ul | EUR 518.1 |
SARS-CoV-2 Spike Monoclonal Antibody |
|||
A73664 | EpiGentek |
|
|
SARS-CoV-2 Nucleocapsid Protein, Avi-His-tag |
|||
E80027 | EpiGentek |
|
|
SARS-CoV-2 (COVID-19) Variant Spike Protein RBD (E484D) Recombinant Protein |
|||
21-829 | ProSci | 0.1 mg | EUR 714.3 |
Description: SARS-CoV-2 (COVID-19) Variant Spike Protein RBD (E484D) Recombinant Protein |
Human CellExp™ SARS-CoV-2 Spike Protein (RBD 310-568), Recombinant |
|||
P1543-10 | Biovision | 10 µg | EUR 187.2 |
Human CellExp™ SARS-CoV-2 Spike Protein (RBD 310-568), Recombinant |
|||
P1543-50 | Biovision | 50 µg | EUR 576 |
Human CellExp™ SARS-CoV-2 Spike Protein (RBD; 331-524), Recombinant |
|||
P1544-10 | Biovision | 10 µg | EUR 187.2 |
Human CellExp™ SARS-CoV-2 Spike Protein (RBD; 331-524), Recombinant |
|||
P1544-50 | Biovision | 50 µg | EUR 576 |
SARS-CoV-2 Spike S1 RBD Protein, Human Fc-Fusion, Avi-Tag |
|||
E80025-1 | EpiGentek | 100 ul | EUR 635.8 |
SARS-CoV-2 Spike S1 (16-685) Protein, Avi-His-tag |
|||
E80021-2 | EpiGentek | 1 ml | EUR 4276.8 |
SARS-CoV spike protein Antibody |
|||
abx023139-100ug | Abbexa | 100 ug | EUR 1028.4 |
SARS-CoV spike protein Antibody |
|||
abx023143-100ug | Abbexa | 100 ug | EUR 1028.4 |
SARS Biotinylated Spike RBD Recombinant Protein |
|||
10-212 | ProSci | 0.1 mg | EUR 752.1 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S1 RBD Antibody [RBD-2B9] |
|||
SD9437-002mg | ProSci | 0.02 mg | EUR 253.22 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) S1 RBD Antibody [RBD-2B9] |
|||
SD9437-01mg | ProSci | 0.1 mg | EUR 723.62 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody |
|||
3525-002mg | ProSci | 0.02 mg | EUR 206.18 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody |
|||
3525-01mg | ProSci | 0.1 mg | EUR 523.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
Anti-SARS-CoV-2 Spike S1 Antibody |
|||
A3000-50 | Biovision | 50 µg | EUR 502.8 |
SARS-CoV-2 Spike S1 (13-665) Protein, Fc Fusion, Avi-tag |
|||
E80020-2 | EpiGentek | 1 ml | EUR 4276.8 |
SARS-CoV-2 Spike S1 (16-685) Protein, Fc Fusion, Avi-tag |
|||
E80022-2 | EpiGentek | 1 ml | EUR 4276.8 |
SARS-CoV-2 (COVID-19) Omicron Variant (B.1.1.529) Spike RBD Recombinant Protein |
|||
21-844 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biologicalprocesses that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Knownreceptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein ofcoronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Mostnotable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike(S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogenand a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells throughinteraction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits,S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor.S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizingantibodyand T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) RBD Recombinant Protein |
|||
10-078 | ProSci | 0.1 mg | EUR 619.8 |
Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is an enveloped, single-stranded, positive-sense RNA virus that belongs to the Coronaviridae family 1. The SARS-CoV-2 genome, which shares 79.6% identity with SARS-CoV, encodes four essential structural proteins: the spike (S), envelope (E), membrane (M), and nucleocapsid protein (N) 2. The S protein is a transmembrane, homotrimeric, class I fusion glycoprotein that mediates viral attachment, fusion, and entry into host cells 3. Each ~180 kDa monomer contains two functional subunits, S1 (~700 a.a) and S2 (~600 a.a), that mediate viral attachment and membrane fusion, respectively. S1 contains two major domains, the N-terminal (NTD) and C-terminal domains (CTD). The CTD contains the receptor-binding domain (RBD), which binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells 3-5. Although both SARS-CoV and SARS-CoV-2 bind the ACE2 receptor, the RBDs only share ~73% amino acid identity, and the SARS-CoV-2 RBD binds with a higher affinity compared to SARS-CoV 3, 6. The RBD is dynamic and undergoes hinge-like conformational changes, referred to as the “down” or “up” conformations, which hide or expose the receptor-binding motifs, respectively 7. Following receptor binding, S1 destabilizes, and TMPRSS2 cleaves S2, which undergoes a pre- to post-fusion conformation transition, allowing for membrane fusion 8, 9. _x000D__x000D__x000D_Polyclonal RBD-specific antibodies can block ACE2 binding 10, 11, and anti-RBD neutralizing antibodies are present in the sera of convalescent COVID19 patients 12, identifying the RBD as an attractive candidate for vaccines and therapeutics. In addition, the RBD is poorly conserved, making it a promising antigen for diagnostic tests 13 14. Serologic tests for the RBD are highly sensitive and specific for detecting SARS-CoV-2 antibodies in COVID19 patients 13 15. Furthermore, the levels of anti-RBD antibodies correlated with SARS-CoV-2 neutralizing antibodies, suggesting the RBD could be used to predict an individual's risk of disease 13._x000D_ |
Sars-Cov, Spike (Middle) Recom Protein |
|||
abx060656-1mg | Abbexa | 1 mg | EUR 2030.4 |
SARS-CoV-2 (COVID-19) Alpha Variant (B.1.1.7, UK) Spike RBD Recombinant Protein |
|||
21-824 | ProSci | 0.1 mg | EUR 1186.8 |
Description: All viruses undergo fast mutations and adept quickly to the countermeasures that the immune systems creates against them. SARS-CoV-2 of the COVID-19 pandemic is no exception here. During the pandemic multiple mutant strains arose. To help the science combat these mutants ProSci offers the RB-Domains of these mutant SPIKE proteins. That is the full RBD domain of the SPIKE surface protein SARS-CoV-2 of the mutant strain B.1.1.7, also commonly known as the "UK / Great Britain mutant". |
SARS-CoV-2 (COVID-19) Beta Variant ( B.1.351, SA) Spike RBD Recombinant Protein |
|||
21-825 | ProSci | 0.1 mg | EUR 1186.8 |
Description: All viruses undergo fast mutations and adept quickly to the countermeasures that the immune systems creates against them. SARS-CoV-2 of the COVID-19 pandemic is no exception here. During the pandemic multiple mutant strains arose. To help the science combat these mutants ProSci offers the RB-Domains of these mutant SPIKE proteins. That is the full Receptor-Binding Domain of the SPIKE surface protein SARS-CoV-2 of the mutant strain B.1.351, also commonly known as the "SA / South Africa mutant". |
SARS-CoV-2 (COVID-19) Gamma Variant (P.1, Brazil) Spike RBD Recombinant Protein |
|||
21-826 | ProSci | 0.1 mg | EUR 1186.8 |
Description: All viruses undergo fast mutations and adept quickly to the countermeasures that the immune systems creates against them. SARS-CoV-2 of the COVID-19 pandemic is no exception here. During the pandemic multiple mutant strains arose. To help the science combat these mutants ProSci offers the RB-Domains of these mutant SPIKE proteins. That is the full RBD domain of the SPIKE surface protein SARS-CoV-2 of the mutant strain P.1, also commonly known as the "Brazil". |
SARS-CoV-2 (COVID-19) Variant (B.1.160, 20A.EU2) Spike RBD (S477N) Recombinant Protein |
|||
20-181 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) Delta Variant Spike RBD (His-Avi Tag) Recombinant Protein |
|||
95-126 | ProSci | 0.05 mg | EUR 386.7 |
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent. |
SARS-CoV-2 (COVID-19) Omicron Variant Spike RBD (His-Avi Tag) Recombinant Protein |
|||
95-128 | ProSci | 0.05 mg | EUR 386.7 |
Description: SARS-CoV-2 Omicron variant, a variant of concern (VOC), known as B.1.1.529, was detected in South Africa at the end of November in 2021. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 90% of the new cases. Omicron variant spike protein carries around 30 amino acid changes, including mutations, deletions and insertions, in which the receptor binding domain (RBD) protein contains 15 mutations. Enhanced transmission of the Omicron variant was observed globally, which is at least 70 times more contagious than the other variants. The Omicron variant affects the effectiveness of COVID-19 vaccine and is resistant to neutralization (monoclonal antibody treatments) to a large extent. |
GENLISA™ Mouse SARS-CoV-2 IgG Antibody To Spike RBD Protein ELISA (Quantitative) |
|||
KBVH015-13 | Krishgen | 12 × 8 wells | EUR 2002.5 |
SARS-CoV-2 (COVID-19) Spike S1 Antibody |
|||
9083-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S1 Antibody |
|||
9083-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike 681P Antibody |
|||
9091-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike 681P Antibody |
|||
9091-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
|||
9119-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
|||
9119-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
|||
9123-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
|||
9123-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (biotin) |
|||
3525-biotin-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (biotin) |
|||
3525-biotin-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (HRP) |
|||
3525-HRP-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (HRP) |
|||
3525-HRP-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Recombinant Protein |
|||
20-233 | ProSci | 0.1 mg | EUR 726.9 |
Description: SARS-CoV-2 (COVID-19) Spike Recombinant Protein |
SARS-CoV-2 (COVID-19) Spike Recombinant Protein |
|||
11-073 | ProSci | 0.1 mg | EUR 695.4 |
Description: May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity. |
SARS-CoV-2(COVID-19) Spike Recombinant Protein |
|||
10-411 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 Spike P26S Antibody (Gamma Variant) |
|||
9573-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named as Gamma variant, was discovered in Japan and later spread in Brazil. It is considered as VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation. |
SARS-CoV-2 Spike P26S Antibody (Gamma Variant) |
|||
9573-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named as Gamma variant, was discovered in Japan and later spread in Brazil. It is considered as VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation. |
SARS-CoV-2 Spike P26S Peptide (Gamma Variant) |
|||
9573P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 Spike P26S Peptide (Gamma Variant) |
Recombinant Coronavirus Spike Protein (SARS-CoV-2; ECD) |
|||
P1533-10 | Biovision | 10 µg | EUR 235.2 |
Recombinant Coronavirus Spike Protein (SARS-CoV-2; ECD) |
|||
P1533-50 | Biovision | 50 µg | EUR 709.2 |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
|||
MPS-0001 | ProSci | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
|||
MPS-0002 | ProSci | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
|||
MPS-0003 | ProSci | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
|||
MPS-0004 | ProSci | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
|||
MPS-0005 | ProSci | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) S Recombinant Protein RBD |
|||
11-215 | ProSci | 0.2 mg | EUR 1086 |
Description: It's been reported that SARS-CoV-2 can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S RBD Recombinant Protein |
|||
10-413 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S RBD Recombinant Protein |
|||
10-431 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S RBD Recombinant Protein |
|||
97-093 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, DPP4, CEACAM etc.. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S1 RBD Detection Set |
|||
SD9400 | ProSci | 1 Set | EUR 569.4 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Alpha Variant (B.1.1.7, UK) Spike S1 (RBD) Recombinant Protein |
|||
21-808 | ProSci | 50 ug | EUR 619.8 |
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a more transmissible variant of SARS-CoV-2, called B.1.1.7, was detected in the south of England. This variant carries a mutation in the RBD at the position 501 (N501Y). |
SARS-CoV-2 (COVID-19) Beta Variant (B.1.351, SA) Spike S1 (RBD) Recombinant Protein |
|||
21-809 | ProSci | 50 ug | EUR 619.8 |
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a new variant of SARS-CoV-2, called B.1.351, was detected in South Africa. This variant carries three mutations in the RBD at the positions 417, 484 and 501 (K417N, E484K, N501Y) and is associated with a higher viral load, which may suggest potential for increased transmissibility. |
SARS-CoV-2 (COVID-19) Alpha Variant (B.1.1.7, UK) Spike S1 (RBD) Recombinant Protein |
|||
21-811 | ProSci | 50 ug | EUR 537.9 |
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a more transmissible variant of SARS-CoV-2, called B.1.1.7, was detected in the south of England. This variant carries a mutation in the RBD at the position 501 (N501Y).The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) (B.1.1.7 Variant, UK) can be used as antigen in Serological ELISA Kits to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma. |
SARS-CoV-2 (COVID-19) Beta Variant (B.1.351, SA) Spike S1 (RBD) Recombinant Protein |
|||
21-812 | ProSci | 50 ug | EUR 537.9 |
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a new variant of SARS-CoV-2, called B.1.351, was detected in South Africa. This variant carries three mutations in the RBD at the positions 417, 484 and 501 (K417N, E484K, N501Y) and is associated with a higher viral load, which may suggest potential for increased transmissibility.The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) (B.1.351 Variant, SA) can be used as antigen in Serological ELISA Kits to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma. |
SARS-CoV-2 (COVID-19) Delta Variant (B.1.617.2) Spike RBD (L452R, T478K) Recombinant Protein |
|||
21-831 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizingantibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) Variant (B.1.429, Ca .20C) Spike RBD (L452R) Recombinant Protein |
|||
20-180 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
Sars-Cov, Spike (N-Term) Recom Protein |
|||
abx060657-1mg | Abbexa | 1 mg | EUR 2247.6 |
Recombinant Coronavirus Spike Protein (SARS-CoV S2) |
|||
P1519-10 | Biovision | 10µg | EUR 187.2 |
Recombinant Coronavirus Spike Protein (SARS-CoV S2) |
|||
P1519-50 | Biovision | 50µg | EUR 661.2 |
SARS-CoV-2 (COVID-19) Spike S1 Antibody (biotin) |
|||
9083-biotin-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S1 Antibody (biotin) |
|||
9083-biotin-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike 681P Antibody (biotin) |
|||
9091-biotin-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike 681P Antibody (biotin) |
|||
9091-biotin-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (cleavage site) |
|||
9095-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (cleavage site) |
|||
9095-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody (biotin) |
|||
9123-biotin-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody (biotin) |
|||
9123-biotin-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein |
|||
21-805 | ProSci | 50 ug | EUR 468.6 |
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. |
SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein |
|||
21-807 | ProSci | 50 ug | EUR 437.1 |
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells.The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) is used as antigen in the Serological ELISA Kit to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma (see SARS-CoV-2 (Spike RBD) IgG Serological ELISA Kit; AG-45B-0020). |
SARS CoV-2 full length spike protein nanodisc complex |
|||
21-817 | ProSci | 0.025 mg | EUR 1968 |
Description: The coronavirus, also known as SARS-CoV-2, enters the cell by using its surface SPIKE. SPIKE is processed on the cell's surface by TMPRSS2, a serine protease. It then subsequently binds to ACE2 a cell surface receptor. The Native SPIKE protein is a trimer that is located in the coronavirus membrane. Therefore to get pure & native SPIKE the trimer needs to be kept intact. Our lab staff achieved this in three different ways: MSP nanodiscs, based on MSP proteins Detergent Mycelles, as you can see here Synthetic nanodiscs |
SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein |
|||
10-107 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein |
|||
10-109 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein |
|||
10-111 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity. |