SARS-CoV-2 Spike Glycoprotein S2 

To Order Contact us: stephen@expresspharmapulse.com

SARS-CoV-2 Spike S1 RBD Protein, Mouse Fc-fusion

E80026
  • EUR 588.50
  • EUR 823.90
  • 20 ul
  • 50 ul

Recombinant Coronavirus Spike Protein (SARS-CoV S2)

P1519-10 10µg
EUR 187.2

Recombinant Coronavirus Spike Protein (SARS-CoV S2)

P1519-50 50µg
EUR 661.2

SARS-CoV-2 Spike S1 (16-685) Protein, Avi-His-tag

E80021
  • EUR 635.80
  • EUR 4276.80
  • 100 ul
  • 1 ml

SARS-CoV-2 Spike S1 RBD (V367F) Protein, Avi-His-tag

E80023
  • EUR 635.80
  • EUR 3934.70
  • 100 ul
  • 1 ml

SARS-CoV-2 (COVID-19) Spike S2 Antibody (biotin)

9123-biotin-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody (biotin)

9123-biotin-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody [4F10]

PM-9428-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody [4F10]

PM-9428-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody [5E6]

PM-9429-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody [5E6]

PM-9429-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1A6]

SD9785-002mg 0.02 mg
EUR 253.22
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1A6]

SD9785-01mg 0.1 mg
EUR 723.62
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1B8]

SD9787-002mg 0.02 mg
EUR 253.22
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1B8]

SD9787-01mg 0.1 mg
EUR 723.62
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1G5]

SD9789-002mg 0.02 mg
EUR 253.22
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1G5]

SD9789-01mg 0.1 mg
EUR 723.62
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1A9]

SD9791-002mg 0.02 mg
EUR 253.22
Description: N/A

SARS-CoV-2 (COVID-19) Spike S2 Antibody [P1A9]

SD9791-01mg 0.1 mg
EUR 723.62
Description: N/A

SARS-CoV-2 Spike S1 (13-665) Protein, Fc Fusion, Avi-tag

E80020
  • EUR 635.80
  • EUR 4276.80
  • 100 ul
  • 1 ml

SARS-CoV-2 Spike S1 (16-685) Protein, Fc Fusion, Avi-tag

E80022
  • EUR 635.80
  • EUR 4276.80
  • 100 ul
  • 1 ml

SARS-CoV-2 Spike S1 RBD Protein, Human Fc-Fusion, Avi-Tag

E80025
  • EUR 635.80
  • EUR 3934.70
  • 100 ul
  • 1 ml

SARS-CoV-2 Spike Peptide

9083P 0.05 mg
EUR 235.5
Description: (NT) SARS-CoV-2 Spike peptide

SARS-CoV-2 Spike Peptide

9087P 0.05 mg
EUR 235.5
Description: (CT) SARS-CoV-2 Spike RBD peptide

SARS-CoV-2 Spike Peptide

9091P 0.05 mg
EUR 235.5
Description: (IN) SARS-CoV-2 Spike peptide

SARS-CoV-2 Spike Peptide

9095P 0.05 mg
EUR 235.5
Description: (IN) SARS-CoV-2 Spike peptide

SARS-CoV-2 (COVID-19) Spike S2 ECD Recombinant Protein

10-115 0.1 mg
EUR 651.3
Description: SARS-CoV-2 (COVID-19) Spike S2 ECD Recombinant Protein

SARS-CoV Spike Antibody

3219-002mg 0.02 mg
EUR 206.18
Description: SARS-CoV Spike Antibody: A novel coronavirus has been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3219-01mg 0.1 mg
EUR 523.7
Description: SARS-CoV Spike Antibody: A novel coronavirus has been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3221-002mg 0.02 mg
EUR 206.18
Description: SARS-CoV Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3221-01mg 0.1 mg
EUR 523.7
Description: SARS-CoV Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3223-002mg 0.02 mg
EUR 206.18
Description: SARS Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3223-01mg 0.1 mg
EUR 523.7
Description: SARS Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3225-002mg 0.02 mg
EUR 206.18
Description: SARS-CoV Spike antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3225-01mg 0.1 mg
EUR 523.7
Description: SARS-CoV Spike antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Protein

abx060655-1mg 1 mg
EUR 2030.4

Recombinant SARS-CoV-2 Spike Glycoprotein(S) (D614G), Partial

E80028-1 20 ul
EUR 388.3

SARS-CoV-2 Spike S1 RBD Protein, Avi-His-tag

E80024-2 1 ml
EUR 4995.1

SARS-CoV-2 Spike S1 RBD Protein, Mouse Fc-fusion

E80026-2 50 ul
EUR 823.9

SARS-CoV-2 Spike Monoclonal Antibody

A73664-050 50 ul
EUR 341

SARS-CoV-2 Spike Monoclonal Antibody

A73664-100 100 ul
EUR 518.1

SARS-CoV-2 Spike RBD Nanobody

A73680-050 50 ul Ask for price

SARS-CoV-2 Spike RBD Nanobody

A73680-100 100 ul
EUR 882.2

SARS-CoV-2 Spike Monoclonal Antibody

A73664
  • EUR 341.00
  • EUR 518.10
  • 50 ul
  • 100 ul

SARS-CoV-2 Spike RBD Nanobody

A73680
  • Ask for price
  • EUR 882.20
  • 50 ul
  • 100 ul

Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2; S2), Recombinant

P1525-10 10 µg
EUR 332.4

Recombinant SARS-CoV-2 Spike S2 ECD Protein with His-Tag

E80009-1 100 ul
EUR 518.1

SARS-CoV-2 Nucleocapsid Protein, Avi-His-tag

E80027
  • EUR 635.80
  • EUR 4087.60
  • 1 ml
  • 100 ul

SARS-CoV-2 Spike S1 (16-685) Protein, Avi-His-tag

E80021-2 1 ml
EUR 4276.8

SARS-CoV-2 Spike S1 RBD (V367F) Protein, Avi-His-tag

E80023-2 1 ml
EUR 3934.7

SARS-CoV-2 (COVID-19) Spike Glycoprotein-S1, Recombinant protein

39-111 0.05 mg
EUR 1520.7
Description: A human infecting coronavirus (viral pneumonia) called 2019 novel coronavirus, 2019-nCoV was found in the fish market at the city of Wuhan, Hubei province of China on December 2019. The 2019-nCoV shares an 87% identity to the 2 bat-derived severe acute respiratory syndrome 2018 SARS-CoV-2 located in Zhoushan of eastern China. 2019-nCoV has an analogous receptor-BD-structure to that of 2018 SARS-CoV, even though there is a.a. diversity so thus the 2019-nCoV might bind to ACE2 receptor protein (angiotensin-converting enzyme 2)  in humans. While bats are possibly the host of 2019-nCoV, researchers suspect that animal from the ocean sold at the seafood market was an intermediate host. RSCU analysis proposes that the 2019-nCoV is a recombinant within the viral spike glycoprotein between the bat coronavirus and an unknown coronavirus.

SARS-CoV spike protein Antibody

abx023139-100ug 100 ug
EUR 1028.4

SARS-CoV spike protein Antibody

abx023143-100ug 100 ug
EUR 1028.4

SARS-CoV-2 (COVID-19) Spike Antibody

3525-002mg 0.02 mg
EUR 206.18
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody

3525-01mg 0.1 mg
EUR 523.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

Anti-SARS-CoV-2 Spike S1 Antibody

A3000-50 50 µg
EUR 502.8

SARS-CoV-2 Spike S1 (13-665) Protein, Fc Fusion, Avi-tag

E80020-2 1 ml
EUR 4276.8

SARS-CoV-2 Spike S1 (16-685) Protein, Fc Fusion, Avi-tag

E80022-2 1 ml
EUR 4276.8

SARS-CoV-2 Spike S1 RBD Protein, Human Fc-Fusion, Avi-Tag

E80025-2 1 ml
EUR 3934.7

Recombinant Coronavirus Spike Protein (SARS-CoV S2; 408-470, 540-573)

P1518-10 10µg
EUR 187.2

Recombinant Coronavirus Spike Protein (SARS-CoV S2; 408-470, 540-573)

P1518-50 50µg
EUR 661.2

Sars-Cov, Spike (Middle) Recom Protein

abx060656-1mg 1 mg
EUR 2030.4

Recombinant 2019-nCoV coronavirus Spike protein, S1+S2 ECD

Spike-194V 100ug
EUR 1932
Description: Recombinant COVID-19 (2019 novel coronavirus) Spike protein (S1+S2 ECD) was fused to His-tag at C-terminus and expressed in Baculovirus-Insect cell. The spike (S) glycoprotein of coronaviruses contains protrusions that will only bind to certain receptors on the host cell.S1 mainly contains a receptor binding domain (RBD) and recognize the cell surface receptor. S2 essential for membrane fusion. S protein are important for neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S2 Recombinant Protein

11-184 0.2 mg
EUR 1212
Description: It's been reported that SARS-CoV-2 can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S2 Recombinant Protein

10-426 0.1 mg
EUR 651.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Antibody

9083-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S1 Antibody

9083-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody

9087-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody

9087-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody

9091-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody

9091-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (biotin)

3525-biotin-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (biotin)

3525-biotin-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (HRP)

3525-HRP-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (HRP)

3525-HRP-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Recombinant Protein

20-233 0.1 mg
EUR 726.9
Description: SARS-CoV-2 (COVID-19) Spike Recombinant Protein

SARS-CoV-2 (COVID-19) Spike Recombinant Protein

11-073 0.1 mg
EUR 695.4
Description: May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.

SARS-CoV-2(COVID-19) Spike Recombinant Protein

10-411 0.1 mg
EUR 714.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 Spike P26S Antibody (Gamma Variant)

9573-002mg 0.02 mg
EUR 229.7
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named as Gamma variant, was discovered in Japan and later spread in Brazil. It is considered as VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation.

SARS-CoV-2 Spike P26S Antibody (Gamma Variant)

9573-01mg 0.1 mg
EUR 594.26
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named as Gamma variant, was discovered in Japan and later spread in Brazil. It is considered as VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation.

SARS-CoV-2 Spike P26S Peptide (Gamma Variant)

9573P 0.05 mg
EUR 235.5
Description: SARS-CoV-2 Spike P26S Peptide (Gamma Variant)

Recombinant Coronavirus Spike Protein (SARS-CoV-2; ECD)

P1533-10 10 µg
EUR 235.2

Recombinant Coronavirus Spike Protein (SARS-CoV-2; ECD)

P1533-50 50 µg
EUR 709.2

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0001 1 Set
EUR 1029.3
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0002 1 Set
EUR 1029.3
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0003 1 Set
EUR 1029.3
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0004 1 Set
EUR 1029.3
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0005 1 Set
EUR 1029.3
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

Sars-Cov, Spike (N-Term) Recom Protein

abx060657-1mg 1 mg
EUR 2247.6

Recombinant Coronavirus Spike Protein (SARS-CoV S2; 408-470, 540-573, His Tag)

P1517-10 10µg
EUR 308.4

SARS-CoV-2 Spike RBD protein antibody pair 1

CSB-EAP33245 1 pair
EUR 900
Description: This is a set of capture antibody and HRP-conjugated antbody for quantitative detection of SARS-CoV-2 Spike RBD protein for through solid phase sandwich ELISA.

SARS-CoV-2 (COVID-19) Spike S1 Antibody (biotin)

9083-biotin-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S1 Antibody (biotin)

9083-biotin-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody (biotin)

9087-biotin-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody (biotin)

9087-biotin-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody (biotin)

9091-biotin-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody (biotin)

9091-biotin-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (cleavage site)

9095-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (cleavage site)

9095-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

21-805 50 ug
EUR 468.6
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

21-807 50 ug
EUR 437.1
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells.The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) is used as antigen in the Serological ELISA Kit to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma (see SARS-CoV-2 (Spike RBD) IgG Serological ELISA Kit; AG-45B-0020).

SARS CoV-2 full length spike protein nanodisc complex

21-817 0.025 mg
EUR 1968
Description: The coronavirus, also known as SARS-CoV-2, enters the cell by using its surface SPIKE. SPIKE is processed on the cell's surface by TMPRSS2, a serine protease. It then subsequently binds to ACE2 a cell surface receptor. The Native SPIKE protein is a trimer that is located in the coronavirus membrane. Therefore to get pure & native SPIKE the trimer needs to be kept intact. Our lab staff achieved this in three different ways: MSP nanodiscs, based on MSP proteins Detergent Mycelles, as you can see here Synthetic nanodiscs

SARS-CoV-2 (COVID-19) Spike-RBD Recombinant Protein

10-008 0.1 mg
EUR 714.3
Description: SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) also known as 2019-nCoV (2019 Novel Coronavirus) is a virus that causes illnesses ranging from the common cold to severe diseases. SARS CoV-2 spike protein is composed of S1 domain and S2 domain. S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on the target cells. SARS-CoV-2 spike protein (RBD) has the potential value for the diagnosis of the virus.

SARS-CoV-2 (COVID-19) Spike-RBD Recombinant Protein

10-015 0.1 mg
EUR 714.3
Description: SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) also known as 2019-nCoV (2019 Novel Coronavirus) is a virus that causes illnesses ranging from the common cold to severe diseases. SARS CoV-2 spike protein is composed of S1 domain and S2 domain. S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on the target cells. SARS-CoV-2 spike protein (RBD) has the potential value for the diagnosis of the virus.

SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

10-100 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-107 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-109 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-111 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

10-117 0.1 mg
EUR 752.1
Description: SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-118 0.1 mg
EUR 651.3
Description: SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

10-204 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

10-206 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-207 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-209 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

10-300 0.1 mg
EUR 632.4
Description: SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein

SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

10-303 0.1 mg
EUR 632.4
Description: SARS-CoV-2 (COVID-19) Spike RBD Recombinant Protein

SARS-CoV-2 Spike P681H Antibody (Alpha, Mu Variant)

9359-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of UK variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in UK variant. UK variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody (Alpha, Mu Variant)

9359-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of UK variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in UK variant. UK variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 156-157EF Antibody

9685-002mg 0.02 mg
EUR 229.7
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 (COVID-19) Spike 156-157EF Antibody

9685-01mg 0.1 mg
EUR 594.26
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

Recombinant Coronavirus Spike Protein (SARS-CoV-2; His tag)

P1528-10 10 µg
EUR 235.2

Recombinant Coronavirus Spike Protein (SARS-CoV-2; His tag)

P1528-50 50 µg
EUR 709.2

Recombinant SARS-CoV-2 Spike Protein S1 (His-tag)

P1540-10 10 µg
EUR 211.2

Recombinant SARS-CoV-2 Spike Protein S1 (His-tag)

P1540-50 50 µg
EUR 818.4

Recombinant SARS-CoV-2 Spike Protein S1 (Fc tag)

P1541-10 10 µg
EUR 211.2

Recombinant SARS-CoV-2 Spike Protein S1 (Fc tag)

P1541-50 50 µg
EUR 818.4

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10A1]

PM-9365-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10A1]

PM-9365-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10B1]

PM-9366-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10B1]

PM-9366-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10C8]

PM-9367-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10C8]

PM-9367-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 26P Antibody [1C3H9]

PM-9583-002mg 0.02 mg
EUR 229.7
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named Gamma variant, was discovered in Japan and later spread in Brazil. It is considered a VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation.

SARS-CoV-2 (COVID-19) Spike 26P Antibody [1C3H9]

PM-9583-01mg 0.1 mg
EUR 594.26
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named Gamma variant, was discovered in Japan and later spread in Brazil. It is considered a VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation.

Recombinant Novel Coronavirus Spike Glycoprotein(S), Partial

E80018
  • EUR 388.30
  • EUR 860.20
  • EUR 4888.40
  • 20 ul
  • 100 ul
  • 1 ml

SARS-CoV-2 Nucleocapsid Protein, Avi-His-tag

E80027-2 100 ul
EUR 4087.6

Recombinant SARS-CoV Spike protein [GST] (37 kDa)

VAng-Wyb8620-inquire inquire Ask for price
Description: SARS-CoV C-terminal of the Spike protein (37 kDa), recombinant protein from E. coli, 1 mg/mL.

Recombinant SARS-CoV Spike protein [GST] (38 kDa)

VAng-Wyb8621-inquire inquire Ask for price
Description: SARS-CoV middle region of the Spike protein (38 kDa), recombinant protein from E. coli, 1 mg/mL.

Recombinant 2019-nCoV coronavirus Spike protein, S2 ECD, expressed in Baculovirus-Insect cells

Spike-197V 100ug
EUR 1932
Description: Recombinant COVID-19 (2019 novel coronavirus) Spike protein (S2 ECD) was fused to His-tag at C-terminus and expressed in Baculovirus-Insect cells. The spike (S) glycoprotein of coronaviruses contains protrusions that will only bind to certain receptors on the host cell.S1 mainly contains a receptor binding domain (RBD) and recognize the cell surface receptor. S2 essential for membrane fusion. S protein are important for neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike E Mosaic Recombinant protein

39-114 0.05 mg
EUR 556.8
Description: A human infecting coronavirus (viral pneumonia) called 2019 novel coronavirus, 2019-nCoV was found in the fish market at the city of Wuhan, Hubei province of China on December 2019. The 2019-nCoV shares an 87% identity to the 2 bat-derived severe acute respiratory syndrome 2018 SARS-CoV-2 located in Zhoushan of eastern China. 2019-nCoV has an analogous receptor-BD-structure to that of 2018 SARS-CoV, even though there is a.a. diversity so thus the 2019-nCoV might bind to ACE2 receptor protein (angiotensin-converting enzyme 2)  in humans. While bats are possibly the host of 2019-nCoV, researchers suspect that animal from the ocean sold at the seafood market was an intermediate host. RSCU analysis proposes that the 2019-nCoV is a recombinant within the viral spike glycoprotein between the bat coronavirus and an unknown coronavirus.

SARS-CoV-2 (COVID-19) Spike S1 Recombinant Protein (biotin)

21-806 50 ug
EUR 437.1
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells.The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) is used as antigen in the Serological ELISA Kit to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma (see SARS-CoV-2 (Spike RBD) IgG Serological ELISA Kit; AG-45B-0020).This biotinylated version of SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) forms a tetramer in the presence of streptavidin and this tetramer can be used to activate B cell memory to SARS-CoV-2 Spike protein.

SARS CoV-2 full length spike protein in LMNG detergent

21-815 0.1 mg
EUR 1413.6
Description: The coronavirus, also known as SARS-CoV-2, enters the cell by using its surface SPIKE. SPIKE is processed on the cell's surface by TMPRSS2, a serine protease. It then subsequently binds to ACE2 a cell surface receptor. The Native SPIKE protein is a trimer that is located in the coronavirus membrane. Therefore to get pure & native SPIKE the trimer needs to be kept intact. Our lab staff achieved this in three different ways: MSP nanodiscs, based on MSP proteins Detergent Mycelles, as you can see here Synthetic nanodiscs

SARS CoV-2 full length spike protein in DIBMA Glycerol

21-816 0.025 mg
EUR 1703.4
Description: The coronavirus, also known as SARS-CoV-2, enters the cell by using its surface SPIKE. SPIKE is processed on the cell's surface by TMPRSS2, a serine protease. It then subsequently binds to ACE2 a cell surface receptor. The Native SPIKE protein is a trimer that is located in the coronavirus membrane. Therefore to get pure & native SPIKE the trimer needs to be kept intact. Our lab staff achieved this in three different ways: MSP nanodiscs, based on MSP proteins Detergent Mycelles, as you can see here Synthetic nanodiscs

SARS-CoV-2 (COVID-19) Spike S Trimer Recombinant Protein

20-182 0.1 mg
EUR 651.3
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike RBD domain Recombinant Protein

20-232 0.1 mg
EUR 726.9
Description: SARS-CoV-2 (COVID-19) Spike RBD domain Recombinant Protein

SARS-CoV-2 (COVID-19) Trimeric Spike (S) Recombinant Protein

10-075 0.1 mg
EUR 991.5
Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is an enveloped, single-stranded, positive-sense RNA virus that belongs to the Coronaviridae family 1. The SARS-CoV-2 genome, which shares 79.6% identity with SARS-CoV, encodes four essential structural proteins: the spike (S), envelope (E), membrane (M), and nucleocapsid protein (N) 2. The S protein is a transmembrane, homotrimeric, class I fusion glycoprotein that mediates viral attachment, fusion, and entry into host cells 3. Each ~180 kDa monomer contains two functional subunits, S1 (~700 a.a) and S2 (~600 a.a), that mediate viral attachment and membrane fusion, respectively. S1 contains two major domains, the N-terminal (NTD) and C-terminal domains (CTD). The CTD contains the receptor-binding domain (RBD), which binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells 3-5. Although both SARS-CoV and SARS-CoV-2 bind the ACE2 receptor, the RBDs only share ~73% amino acid identity, and the SARS-CoV-2 RBD binds with a higher affinity compared to SARS-CoV 3, 6. The RBD is dynamic and undergoes hinge-like conformational changes, referred to as the “down” or “up” conformations, which hide or expose the receptor-binding motifs, respectively 7. Following receptor binding, S1 destabilizes, and TMPRSS2 cleaves S2, which undergoes a pre- to post-fusion conformation transition, allowing for membrane fusion 8, 9. The S protein has been the main focus of therapeutic and vaccine design as it is highly immunogenic. Both neutralizing antibodies 10,11 and memory T cells 12,13 targeting the S protein are present in the sera of convalescent COVID-19 patients.

SARS-CoV-2 (COVID-19) Biotinylated Spike RBD Recombinant Protein

10-205 0.1 mg
EUR 752.1
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Biotinylated Spike S1 Recombinant Protein

10-208 0.1 mg
EUR 752.1
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensinconverting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike RBD + SD1 Recombinant Protein

10-304 0.1 mg
EUR 632.4
Description: SARS-CoV-2 (COVID-19) Spike RBD + SD1 Recombinant Protein

SARS-CoV-2 (COVID-19) Spike L452R Antibody (Delta Variant)

9463-002mg 0.02 mg
EUR 229.7
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 (COVID-19) Spike L452R Antibody (Delta Variant)

9463-01mg 0.1 mg
EUR 594.26
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 (COVID-19) Spike P681R Peptide (Delta Variant)

9673P 0.05 mg
EUR 235.5
Description: SARS-CoV-2 (COVID-19) Spike P681R Peptide (Delta Variant)

Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant

P1530-10 10 µg
EUR 187.2

Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant

P1530-50 50 µg
EUR 709.2

Human CellExp™ SARS-CoV-2 Spike Protein (S1), Recombinant

P1531-10 10 µg
EUR 235.2

Human CellExp™ SARS-CoV-2 Spike Protein (S1), Recombinant

P1531-50 50 µg
EUR 709.2

Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2), Recombinant

P1547-10 10 μg
EUR 235.2

Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2), Recombinant

P1547-50 50 μg
EUR 782.4

Human CellExp™ SARS-CoV-2 Spike Protein (S1), Recombinant

P1555-10 10μg
EUR 235.2

Human CellExp™ SARS-CoV-2 Spike Protein (S1), Recombinant

P1555-50 50μg
EUR 709.2

SARS-CoV-2 Spike P681H Antibody [9F7E4] (Alpha, Mu Variant)

PM-9371-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [9F7E4] (Alpha, Mu Variant)

PM-9371-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [1G8D11] (Alpha, Mu Variant)

PM-9373-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [1G8D11] (Alpha, Mu Variant)

PM-9373-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [7A4D12](Alpha, Mu Variant)

PM-9374-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [7A4D12](Alpha, Mu Variant)

PM-9374-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [7C11H11] (Omicron, Alpha Variant)

PM-9375-002mg 0.02 mg
EUR 229.7
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 Spike P681H Antibody [7C11H11] (Omicron, Alpha Variant)

PM-9375-01mg 0.1 mg
EUR 594.26
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage was found to have developed 14 lineage-specific amino acid replacements and 3 deletions prior to its discovery. The transmission of alpha variant (B.1.1.7 lineage) was increased at least 50%. Increased severity and higher death rate were also found in apha variant. Alpha variant will not affect the effectiveness of COVID19 vaccine. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B5]

SD9431-002mg 0.02 mg
EUR 253.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B5]

SD9431-01mg 0.1 mg
EUR 723.62
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B7]

SD9433-002mg 0.02 mg
EUR 253.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T4P3-B7]

SD9433-01mg 0.1 mg
EUR 723.62
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P8-F9]

SD9503-002mg 0.02 mg
EUR 253.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P8-F9]

SD9503-01mg 0.1 mg
EUR 723.62
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P7-G12]

SD9505-002mg 0.02 mg
EUR 253.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody [T5P7-G12]

SD9505-01mg 0.1 mg
EUR 723.62
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 Spike S1 RBD Protein, Avi-His-tag

E80024-1 100 ul
EUR 635.8

SARS-CoV-2 Spike S1 RBD Protein, Mouse Fc-fusion

E80026-1 20 ul
EUR 588.5

Recombinant SARS-CoV-2 Spike RBD Protein with His-Tag

E80000-1 100 ul
EUR 518.1

Recombinant SARS-CoV-2 Spike S1 Protein with His-Tag

E80004-1 100 ul
EUR 518.1

Recombinant SARS-CoV-2 Spike S1 Protein with His-Tag

E80007-1 100 ul
EUR 518.1

Recombinant SARS-CoV-2 Spike RBD Protein with mFc Tag

E80011-1 100 ul
EUR 588.5

Recombinant SARS-CoV-2 Spike RBD Protein with His-Tag

E80015-1 100 ul
EUR 695.2

MERS-CoV Spike protein S2 (aa 726-1296) [His]

DAG-H10296 20µg
EUR 868.8

anti-SARS spike glycoprotein antibody (clone 3A2)

65-101 50ug
EUR 355.2
Description: The anti-SARS spike glycoprotein antibody (clone 3A2) is available in Europe and for worldwide shipping via Gentaur.

SARS S2 [His]

DAG1862 500 ug
EUR 3034.8

SARS-CoV-2 (COVID-19) Spike Recombinant protein (800-1000 aa)

39-125 0.05 mg
EUR 556.8
Description: A human infecting coronavirus (viral pneumonia) called 2019 novel coronavirus, 2019-nCoV was found in the fish market at the city of Wuhan, Hubei province of China on December 2019. The 2019-nCoV shares an 87% identity to the 2 bat-derived severe acute respiratory syndrome 2018 SARS-CoV-2 located in Zhoushan of eastern China. 2019-nCoV has an analogous receptor-BD-structure to that of 2018 SARS-CoV, even though there is a.a. diversity so thus the 2019-nCoV might bind to ACE2 receptor protein (angiotensin-converting enzyme 2)  in humans. While bats are possibly the host of 2019-nCoV, researchers suspect that animal from the ocean sold at the seafood market was an intermediate host. RSCU analysis proposes that the 2019-nCoV is a recombinant within the viral spike glycoprotein between the bat coronavirus and an unknown coronavirus.

SARS-CoV-2 (COVID-19) Spike Recombinant protein (1000-1200 aa)

39-126 0.05 mg
EUR 556.8
Description: A human infecting coronavirus (viral pneumonia) called 2019 novel coronavirus, 2019-nCoV was found in the fish market at the city of Wuhan, Hubei province of China on December 2019. The 2019-nCoV shares an 87% identity to the 2 bat-derived severe acute respiratory syndrome 2018 SARS-CoV-2 located in Zhoushan of eastern China. 2019-nCoV has an analogous receptor-BD-structure to that of 2018 SARS-CoV, even though there is a.a. diversity so thus the 2019-nCoV might bind to ACE2 receptor protein (angiotensin-converting enzyme 2)  in humans. While bats are possibly the host of 2019-nCoV, researchers suspect that animal from the ocean sold at the seafood market was an intermediate host. RSCU analysis proposes that the 2019-nCoV is a recombinant within the viral spike glycoprotein between the bat coronavirus and an unknown coronavirus.

SARS-CoV-2 (COVID-19) Spike (D614G) (Stable Trimer) Recombinant Protein

21-814 50 ug
EUR 752.1
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The original Wuhan strain of the virus has become quickly replaced by its more transmissible variant, mainly determined by a single amino acid point mutation D614G. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. It has been demonstrated that certain mutations and the inclusion of trimerization motif can stabilize recombinant Spike protein trimers.The recombinant protein SARS-CoV-2 Spike Protein (D614G) (Stable Trimer) (rec.) (His) could be useful for structural biology research, vaccine development, serological diagnostic kit development or neutralizing antibody screening.

SARS-CoV-2 (COVID-19) Spike RBD + SD1 +SD2 Recombinant Protein

10-305 0.1 mg
EUR 632.4
Description: SARS-CoV-2 (COVID-19) Spike RBD + SD1 +SD2 Recombinant Protein

SARS-CoV-2 (COVID-19) Spike 156-157EFdel Antibody (Delta Variant)

9689-002mg 0.02 mg
EUR 229.7
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 (COVID-19) Spike 156-157EFdel Antibody (Delta Variant)

9689-01mg 0.1 mg
EUR 594.26
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2; S1), Recombinant

P1524-10 10 µg
EUR 332.4

Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2; RBD), Recombinant

P1529-10 10 µg
EUR 235.2

Human CellExp™ Coronavirus Spike Protein (SARS-CoV-2; RBD), Recombinant

P1529-50 50 µg
EUR 709.2

SARS-CoV-2 (COVID-19) Spike P26S Antibody [5G12G11] (Gamma Variant)

PM-9590-002mg 0.02 mg
EUR 229.7
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named Gamma variant, was discovered in Japan and later spread in Brazil. It is considered a VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation.

SARS-CoV-2 (COVID-19) Spike P26S Antibody [5G12G11] (Gamma Variant)

PM-9590-01mg 0.1 mg
EUR 594.26
Description: In January of 2021 a new lineage of SARS-CoV-2, known as P.1 and named Gamma variant, was discovered in Japan and later spread in Brazil. It is considered a VOC (variant of concern). This variant carries 10 mutations in spike protein, including N501Y, E484K and K417T in RBD, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Gamma variant (P.1 lineage) was observed globally, which is 3.5 times more contagious as the original one. The Gamma variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent due to the immune escape E484K mutation.

SARS-CoV-2 (COVID-19) Spike P681R Antibody [5H4C5] (Delta Variant)

PM-9677-002mg 0.02 mg
EUR 229.7
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 Spike Glycoprotein S2